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Learning and Matching of Dynamic Shape
Manifolds for Human Action Recognition

Liang Wang and David Suter

Abstract—In this paper, we learn explicit representations for dy-
namic shape manifolds of moving humans for the task of action
recognition. We exploit locality preserving projections (LPP) for
dimensionality reduction, leading to a low-dimensional embedding
of human movements. Given a sequence of moving silhouettes as-
sociated to an action video, by LPP, we project them into a low-di-
mensional space to characterize the spatiotemporal property of the
action, as well as to preserve much of the geometric structure. To
match the embedded action trajectories, the median Hausdorff dis-
tance or normalized spatiotemporal correlation is used for simi-
larity measures. Action classification is then achieved in a nearest-
neighbor framework. To evaluate the proposed method, extensive
experiments have been carried out on a recent dataset including
ten actions performed by nine different subjects. The experimental
results show that the proposed method is able to not only recog-
nize human actions effectively, but also considerably tolerate some
challenging conditions, e.g., partial occlusion, low-quality videos,
changes in viewpoints, scales, and clothes; within-class variations
caused by different subjects with different physical build; styles of
motion; etc.

Index Terms—Action recognition, dimensionality reduction,
human motion analysis, locality preserving projections (LPP).

I. INTRODUCTION

VISUAL analysis of human movements concerns the de-
tection, tracking and recognition of people, and, more

generally, the understanding of human activities, from image
sequences [3]. In particular, the recognition of human ac-
tivities has a wide range of promising applications such as
smart surveillance, perceptual interfaces, interpretation of sport
events, etc. Although there has been much work on human
motion analysis over the past two decades (see reviews [1]–[3]),
activity understanding still remains challenging. In terms of
higher-level analysis, previous studies generally fall under two
major categories of approaches, i.e., template matching based
approaches and state-space approaches [3]. The former usually
characterizes the spatiotemporal distribution generated by the
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motion in its continuum, e.g., Bobick and Davis [24] proposed
temporal templates for the representation and recognition of
aerobics actions. The latter generally defines each static posture
in the action as a state, and recognizes it through considering
temporal variations of those poses using state-space models,
e.g., Yamato et al. [30] combined the mesh features of 2-D
human blobs with the HMMs to identify tennis behaviors. Our
approach is a form of matching and is, thus, closer to the first
category.

An important question in action recognition is how to extract
and represent useful information from raw video data. There
have been various approaches to extract features, e.g., key
frame extraction [25], the computation of optical flow [4]–[6],
space-time gradients and local descriptors [19], [21], [22],
feature tracking [7]–[18], etc. However, the key frame lacks
motion information, and the usage of exemplar poses becomes
impractical as the number of activities increases. The studies
based on computing local gradients or intensity-based features
can be unreliable in cases of low-quality video, smooth sur-
faces, motion discontinuities and singularities. Feature tracking
is also complex due to the large variability in the articulation
of the human body, fast motions, self-occlusions, changes of
appearance, etc.

Shape and kinematics are two important cues in human move-
ment analysis [26]. It is difficult to accurately extract kinematics
from real videos using current imperfect vision techniques. Al-
ternatively, focusing on shape, human action can be regarded
as a temporal process in which human silhouettes continuously
change over time. If the extracted feature in each frame charac-
terizes the human silhouette, temporal variations of these fea-
tures will implicitly characterize motion kinematics. Recently,
there has been some work showing that human silhouette plays
a considerable role in the activity understanding [23]–[29]. It
is an interesting idea to use purely binary silhouette (or shape)
information without any explicit body models for action recog-
nition. We pursue this idea in this paper.

A. Motivation and Overview of Approach

Our study aims to establish an effective action recognition
method using analysis of spatiotemporal silhouettes measured
during the activities, based on the idea that spatiotemporal vari-
ations of human silhouettes encode not only spatial information
about body poses at certain instants, but also dynamic informa-
tion about global body motion and the motions of local body
parts. It appears to be feasible to use features that can be ob-
tained from space-time shapes for exploring the action proper-
ties. In contrast to feature tracking, extracting space-time shapes
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is also easier to implement using current vision technologies, es-
pecially in the case of stationary cameras.

The deformations of the human silhouette during an activity
are subject to certain physical and temporal constraints. The sil-
houettes can be regarded as points in a high-dimensional vi-
sual space, and these points may generally be expected to lie
on a low-dimensional manifold embedded in the high-dimen-
sional image space. This motivates the analysis of human ac-
tions in a low-dimensional subspace rather than the ambient
space. In addition to principal component analysis (PCA) [34]
and linear discriminant analysis (LDA) [35], some newer frame-
works for dimensionality reduction have been introduced, e.g.,
isometric feature mapping (Isomap) [37], local linear embed-
ding (LLE) [36], locality preserving projections (LPP) [39], etc.
There are many impressive results concerning how to discover
the intrinsic features of the data manifold, but there have been
relatively fewer reports on practical applications of manifold
learning for complex human action recognition.

Based on the above considerations, this paper explores the
applicability of analysis of dynamic shapes of moving objects
for action recognition. To characterize the properties of human
actions in a more compact manner, the associated sequences of
dynamic silhouettes are used to learn the activity space using
LPP [39]. To match activity trajectories in the low-dimensional
embedding space, two kinds of motion similarity measures are
used. Finally, supervised pattern classification techniques are
applied for action recognition in a nearest-neighbor framework.
Although the method is simple in essence, the experimental re-
sults are encouraging.

B. Contributions

The main contributions of this paper are summarized as fol-
lows.

• We develop a simple but effective method for human action
recognition using dynamic shape analysis. The proposed
method does not directly analyze the dynamics of motions,
but derives a compact trajectory description to reflect the
characteristics of motion patterns.

• Performance evaluation is carried out on a recently re-
ported database [27], with size similar or larger to those
of most action databases currently in use, in terms of the
number of actions, subjects and videos, and good results
with considerable robustness are obtained, which demon-
strates that silhouettes are indeed informative for charac-
terization and recognition of human motions.

• Our experimental results show that LPP can discover the
intrinsic structure of action manifolds and can, thus, pro-
vide more compact feature representations. This extends to
video-based human action recognition, the relative success
of LPP demonstrated over PCA and LDA in image-based
face recognition [43].

• We provide the quantitative and qualitative comparative
experiments to examine the proposed method, as well as
comparison of different dimensionality reduction methods.
In contrast, a large number of papers in the literature only
reported the recognition results on individual limited-size
databases, but they seldom made informed comparisons
among different algorithms.

• The proposed method has several desirable properties: a)
it is easier to comprehend and implement, without the re-
quirements of explicit feature tracking and complex prob-
abilistic modeling of motion patterns; b) being based on
binary silhouette analysis, it naturally avoids some prob-
lems arising in most previous methods, e.g., unreliable 2-D
or 3D tracking, expensive and sensitive optical flow com-
putation, etc; and c) it obtains good results on a large and
challenging database and exhibits considerable robustness.

C. Organization

Section II reviews related work on action recognition and the
dimension reduction methods. Section III details visual inputs
and the method of activity subspace learning. Section IV de-
scribes action recognition. A large number of experimental and
comparative results are presented and discussed in Section V,
prior to a summary in Section VI.

II. RELATED WORK

A. Human Action Recognition

There has been much work on human motion/action recogni-
tion in the recent literature [4]–[33]. We will briefly review those
methods in order to put ours into context. For clarity, we roughly
divide the existing work into three major categories, based on
the used low-level feature cues, as follows:

1) Feature Tracking Based Methods: Many traditional
methods of activity recognition are based on feature tracking in
either 2-D or 3-D space [1], [2]. The earliest study on feature
tracking for motion perception is probably due to Johansson’s
experiments with moving light displays (MLD) [31]. Song et al.
[20] used spatial arrangements of the tracked points to distin-
guish between walking and biking. Rao and Shah [14] used the
trajectory of a tracked hand to differentiate between actions
such as opening a cabinet or picking up an object. In [18], an
action was represented by 40 curves derived from the tracking
results of five body parts using a cardboard people model. In
addition to 2-D features, some approaches used 3-D informa-
tion to establish motion descriptors based on positions, angles
and velocities of body parts [7]–[9], [12], [13], though accurate
3-D tracking is quite difficult for unrestricted activities. For
example, Ali and Aggarwal [12] used the angles of inclination
of the torso, the lower and upper parts of legs as features to
recognize activity.

2) Intensity or Gradient Based Methods: Some researchers
used intensity or gradient-based features for motion recogni-
tion. Zelnik-Manor and Irani [21] used marginal histograms of
spatiotemporal gradients at multiple temporal scales to cluster
video events. The work by Polana and Nelson [6] used the
normal flow for periodic and nonrigid motion recognition.
Efros et al. [5] proposed a descriptor based on blurred optical
flow measurements, and applied it to recognize actions on
ballet, tennis and football datasets. There has also been sig-
nificant interest in approaches that exploit local descriptors on
interest points in static images or videos. Schuldt et al. [22]
constructed video representations in terms of local space-time
features and integrated such representations with a SVM
classification scheme for action recognition. Dollar et al. [19]
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proposed to characterize behaviors through spatiotemporal fea-
ture points, in which a behavior was described in terms of the
types and locations of feature points present. However, these
studies usually rely on the assumption that one can reliably
detect a sufficient number of stable interest points in videos.

3) Silhouette-Based Methods: Since human actions can be
characterized as motion of a sequence of human silhouettes
over time, silhouette-based methods are becoming popular
[23]–[29]. Kellokumpu et al. [23] proposed a human activity
recognition method from sequences of postures. A SVM was
used for posture classification and then the discrete HMMs
were used for activity recognition. In [28], Sminchisescu et
al. recognized human motions based on discriminative con-
ditional random field (CRF) and maximum entropy Markov
models (MEMM), using image descriptors combining shape
context and pairwise edge features extracted on the silhou-
ette. Blank et al. [27] utilized properties of the solution to
the Poisson equation to extract features from the space-time
shapes, e.g., local space-time saliency, action dynamics, shape
structure and orientation. They showed that these features were
useful for action recognition, detection and clustering.

As stated earlier, feature tracking is complex due to the large
variability in the shape and articulation of the human body. In
particular, perfect limb tracking is not yet well solved. When
using image measurements in terms of optical flow, gradients or
intensity-based features, the recognition results depend greatly
on the recording conditions. In contrast, human silhouette ex-
traction from videos is easy for current vision techniques, espe-
cially in the imaging setting with fixed cameras. So, the method
that we present here directly relies on moving silhouettes.

B. Methods of Dimensionality Reduction

In many areas, such as artificial intelligence and informa-
tion processing, one is often confronted with intrinsically
low-dimensional data lying in a very high-dimensional space.
Accordingly, much work on dimensionality reduction has been
proposed to solve the problem of “curse of dimensionality.”
Both linear PCA and LDA usually fail to discover the un-
derlying structure if the observed images lie on a nonlinear
manifold hidden in the high-dimensional image space. Al-
ternatively, some nonlinear techniques have been carried out.
As a global embedding algorithm, Isomap [37] presumes that
isometric properties should be preserved in both the obser-
vation space and the intrinsic embedding space in the affine
sense. LLE [36] and Laplacian eigenmaps (LE) [38] focus on
the preservation of local neighbor structure. Recently, He and
Niyogi proposed LPP [39], based on linear projective maps that
arise by solving a variational problem that optimally preserves
the neighborhood structure of the data set. Despite being linear,
LPP shares many of the data representation properties of non-
linear techniques. Yet it is computationally more tractable, and
more crucially, is defined everywhere rather than just on the
training data points. This paper will, thus, use LPP to obtain
low-dimensional embedding of dynamic shapes.

A few researchers have recently explored nonlinear dimen-
sionality reduction methods for different vision tasks such as
3-D pose recovery [40], [42], face and expression recognition
[43]–[45] and visual tracking [41], [42]. However, research on

the manifold learning of human activities for recognition is still
limited. A work closely related to this paper is that of [32],
in which PCA was used to obtain low-dimensional action rep-
resentations. Our method is different from that work in a few
major aspects: a) Visual input. The response of the infinite im-
pulse response (IIR) filter on original frames is used to con-
struct the feature images in [32]. Instead, we just use binary
silhouettes. These are easier to extract and less sensitive to the
low color contrast and texture changes of clothes. b) Embedding
method. In the case of articulated objects, action measurements
are inherently nonlinear across the whole action. Linear PCA
will not be able to effectively discover the underlying structure
of actions. Although LPP is linear, it is of particular applicability
in the special case where the observed data is a nonlinear man-
ifold embedded in the ambient space [39]. c) Similarity mea-
sures. In addition to the median Hausdorrf distance, we use the
normalized spatiotemporal correlation for measuring the motion
similarity, which counters their claim that frame-to-frame cor-
relation appears to be not efficient for matching action trajec-
tories. d) Robustness test. No experiments are provided in [32]
to explain the methods’ robustness. We compare the method of
[32] with ours on the same dataset, and demonstrate the better
robustness of LPP than PCA on some walking sequences with
various challenging conditions.

III. ACTIVITY MANIFOLD LEARNING

It is a formidable task to learn the complete structure of the ac-
tivity in the high-dimensional image space. Our idea is to embed
the human actions into a lower dimensional feature space. We
choose LPP for this goal based on the following considerations:
a) LPP explicitly models the manifold structure by an adjacency
graph, which provides an efficient subspace learning algorithm
to discover the intrinsic structure of the action space; b) LPP
shares some of the data representation properties of nonlinear
techniques such as LLE, e.g., locality preserving characteristic;
c) LPP is obtained by finding the optimal linear approximations
to eigenfunctions of the Laplace Beltrami operator [39]. This
linearity naturally leads to low computation complexity and is,
thus, more efficient for practical applications; and d) although a
few nonlinear methods (e.g., Isomap, LLE) do yield impressive
results on some benchmark artificial datasets, they are defined
only on the training data points and how to evaluate the maps
on new test data remains unclear [43]. In contrast, LPP may be
simply applied to any new data point.

A. Brief Introduction to LPP

The problem of linear dimensionality reduction can be gen-
erally formalised as follows. Given a set of high-dimensional
data points in , find a transformation matrix

, so that these data points can be represented by a set of
low-dimensional points in , where

.
Based on [39], the algorithmic procedure of LPP is simply

summarized as follows:
1) Constructing the adjacency graph: Let denote a graph

with nodes. An edge will be put between the nodes and
if and are “close,” where “close” can be defined

by -neighbourhoods, (i.e., in
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, where defines the radius of the local neighborhood),
or -nearest neighbours, (i.e., is among the

-nearest neighbours of or is among the -nearest
neighbours of ).

2) Choosing the weights: The weights evaluate the local struc-
ture of the data space. is a sparse and symmetric
matrix with the weight of the edge joining the nodes
and , and 0 if there is no such edge. As well, two varia-
tions for weighting the edges can be used, i.e., heat kernel,

, , or more simply, if
and only if the vertices and are connected.

3) Eigenmaps: The optimal projection preserving the locality
can be solved by minimizing the following objective func-
tion based on the standard spectral graph theory [39]

(1)

This minimization problem is to ensure that if and
are close, then and are close as well. Let denote a
transformation vector. The objective function can be mod-
ified [39]

(2)

where is a diagonal matrix whose entries are column
(or row) sums of symmetric , i.e., ,

is the Laplacian matrix, and is the data matrix
. Matrix provides a natural measure on

the data points. The larger the value of (corresponding
to ), the more “important” is. Therefore, a constraint
is imposed [39]

(3)

Accordingly, the minimization problem reduces to find

(4)

That is, to find the solution of the generalized eigenvalue
and eigenvector problem [39]

(5)

Let the column vectors be the solutions of
(5), ordered according to their eigenvalues

. Thus, the embedding of each data point is
represented by

(6)

where represents the embedding function
. The obtained projections are actually

Fig. 1. Visual input representations of a jumping jack action. From top to
bottom: III , DT-I, � III , DT-II, edge of III , and DT-III, respectively.

the optimal linear approximation to the eigenfunctions
of the Laplace Beltrami operator on the manifold. For
more details on the derivation and justification of LPP, the
reader may refer to [39].

B. Representations of Visual Inputs

Effective feature representation is important in the domain
of pattern recognition. One basic assumption here is that a se-
quence of regions of interest (ROI) (i.e., the silhouettes of a
moving human) can be obtained from the original video (see
Fig. 1). These foreground images are then centred and normal-
ized on the basis of keeping the aspect ratio property of the
moving silhouette so that they contain as much foreground as
possible and are all of equal dimensions. Considering that es-
tablishing correspondences between landmarks on the silhou-
ettes is not always feasible because of the temporal changes in
topology and self-occlusions, the resulting normalized images,
namely raw silhouette representations, are directly used as vi-
sual inputs for action subspace learning.

Alternatively, we also represent each shape instance as an im-
plicit function by using the distance transform (DT) technique
[47]. The result of the transformation is a grayscale image that
looks similar to the input image. For each pixel in the binary
image , the distance transform assigns a number that is the
distance between that pixel and the nearest nonzero pixel of
(i.e., the pixels with white color in Fig. 1). There are several dif-
ferent sorts of distance transforms depending upon which dis-
tance metric is being used to determine the distance between
pixels. We just use the simple Euclidean distance in our exper-
iments. The resulting representations naturally impose smooth-
ness on the distances between the shapes. Note that all these de-
rived representations depend essentially on the silhouettes, thus
indirectly reflecting deformations of the dynamic shapes. Fig. 1
shows examples of different representations of visual input, in-
cluding raw silhouette and three different DTs corresponding
to , reversion of and the edge map of , named as DT-I, DT-II,
and DT-III, respectively.
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C. Subspace Learning

The original image representations are both noisy and expen-
sive to analyze. We adopt LPP to embed activities into a lower
dimensional subspace for more compact representations. Con-
sider classes (i.e., different actions) where each class repre-
sents a sequence of silhouettes (or derived DT representations).
For each frame with the resolution of , the image is
simply converted into an -dimensional vector

in a raster-scan manner. Let be the th input frame in the
th class and the number of such inputs in the th class. The

total number of training samples is ,
and the whole training data set can be represented by

(7)

where each column of is an -dimensional data point. For
each class of action, multiple sequences may be freely added to
the training data without altering the following learning proce-
dure.

To construct an affinity matrix , the neighbourhood of each
point is directly determined by its -nearest neighbour points
based on the distance measured in the input space. To measure
the distance between two data points and , we compute the
cosine of the angle between the two vectors

(8)

Two points that need to be emphasized are: 1) we do not use
the -neighborhood to construct the adjacency graph, because
it is often difficult to choose an optimal in real-world appli-
cations, while the nearest-neighbor graph can be constructed
more easily and stably [43], and 2) we do not use temporal infor-
mation to determine the neighbors of each shape for obtaining
an embedding that preserves the geometry of the manifold. We
also experiment with the supervised form of LPP (named as
S-LPP) by integrating the class information when constructing
the affinity graph. That is, and will be directly connected
if and belong to the same class.

To avoid an extra parameter selection (i.e., for heat kernel
function) in the learning process, we simply use the 0–1
weighting scheme to set the weight of the edge, i.e.,

the nodes and are connected
otherwise.

(9)

Then we solve the “eigenmaps” problem of (5) to obtain the em-
bedding function . The embedding results of the original data
are given by . Each data point is embedded into
a point in the low-dimensional subspace. A sequential move-
ment of a certain action is accordingly mapped into a trajectory
in such a parametric space. Fig. 2 gives two illustrations of ac-
tion trajectories in 3-D space for visualization, where the size of
the marker increases over time, reflecting its temporal progres-
sion.

IV. ACTIVITY CLASSIFICATION

Action recognition can be solved through measuring motion
similarities between the reference motion patterns and test sam-

Fig. 2. Examples of action trajectories in 3-D subspace: (left) skip and (right)
jump.

ples in the low-dimensional embedding space. Assume that two
action sequences are respectively mapped into and

, where is the reduced dimensionality, and and
are the durations of these two complete actions respectively.

Note that the same activities can have different temporal dura-
tions due to speed changes (but have the same moving path), and
different activities may have significantly different temporal du-
rations. We select two kinds of distance metrics to measure the
motion similarity. Before computing the similarity, each column
vector (corresponding to a frame in the sequence) in the ma-
trixes and is normalized, i.e., .

A. Motion Similarity

1) Similarity-I: Normalized Spatiotemporal Correlation:
Action is a kind of spatiotemporal motion pattern, so we may
use spatiotemporal correlation to capture its spatial structural
and temporal transitional characteristics by

(10)

where and are warped (temporally) versions from and
, and and explain time stretching and shifting respectively.

We warp each action trajectory matrix into the same temporal
duration by the bicubic interpolation technique. The piece-
wise bicubic interpolation produces a much smoother surface
than the bilinear interpolation since the value of an interpolated
point is a combination of the values of the sixteen closest points,
which can be a key advantage for applications like image pro-
cessing. Accordingly, will be selected within .
To reduce the influence of the interpolation in real operations,
we may simply select as max , which will at least en-
sure that each time only one matrix needs to be warped. Assume
that , will keep unchanged, and will be tempo-
rally warped [i.e., , as represented in (10)]. Other-
wise, the roles of and will be swapped in (10). Note that
the converted matrixes have the same dimension, so the shifting
here is circular, not linear. The computation manner of Simi-
larity-I usually requires knowing the temporal duration of each
one action for such an approximate frame-to-frame matching.
If the length of the input test is much less (or more) than one
duration (a whole action as reference), the recognition accuracy
will naturally degrade.

2) Similarity-II: Median Hausdorff Distance: The action du-
ration is not necessarily always easy to estimate (and segment)
in real videos. However, the computed trajectory of each se-
quence depends on the duration and temporal shift of the ac-
tion. A distance measure that can handle changes in duration
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and temporal shifts is, thus, ideal. The Hausdorff distance mea-
sure provides a means of determining the resemblance of one
point set to another, by examining the fraction of points in one
set that lie near points in the other set (and vice versa). We use
a variant of the Hausdorff metric, i.e., the median value of the
minimum

(11)

Since the Hausdorff distance is oriented, to ensure symmetry,
we modify the final distance measure to

(12)

The smaller the distance measure is, the more similar the two ac-
tions are. Note that the computation manner of Similarity-II im-
plicitly includes the temporal constraints between frame-based
observation vectors, i.e., the closest points between two point
sets ideally have the same temporal order in similar motion
classes. Note that we find from our experiments that the median
Hausdorff distance exhibits similar results to the mean Haus-
dorff distance on the dataset we use [27], though the “median”
is generally thought to be more robust than the “mean,” espe-
cially when outliers exist.

B. Classifier

Action classification is performed in a nearest neighbour
framework. Let represent a test action sequence and
represent the th reference action sequence. We will classify
this test as the class that can minimize the similarity distance
between the test sequence and all reference patterns, i.e.,

(13)

where is the similarity measure or defined above. No
doubt, a more sophisticated classifier could be employed, but the
interest here is to evaluate the genuine discriminatory powers of
the used features.

V. EXPERIMENTAL RESULTS

Extensive experiments have been carried out to verify the ef-
fectiveness of the proposed method. The following describes the
details of the experiments and the results. Note that the evalua-
tion reported here is generally in terms of the percentage of the
correctly recognized actions among all tests.

A. Evaluation Dataset

Due to the lack of a common evaluation database, of a reason-
able size, in the domain of human action recognition; most re-
searchers usually evaluate their methods on individual databases
with a different number and category of actions (see Table V
for a simple summary of some action databases currently in
use). In this paper, we use a recent database reported in [27].
To the best of our knowledge, this database is one of the few,

Fig. 3. Some example images of actions. From top to bottom: bend, jack, jump,
pjump, run, side, skip, walk, wave1, and wave2, respectively.

reasonably sized (in terms of the number of subjects, actions
and videos), concurrent action databases available in the public
domain. It consists of 81 low-resolution videos (180 144,
25 fps) from nine different people, each performing nine natural
actions. These actions include bending (bend), jumping jack
(jack), running (run), walking (walk), jumping-forward-on-two-
legs (jump), jumping-in-place-on-two-legs (pjump), galloping-
sideways (side), waving-one-hand (wave1), and waving-two-
hands (wave2). Together with one more recently added action of
skipping (skip), the dataset in our experiments in total includes
ten actions and 90 videos. These actions are either periodic (e.g.,
run and walk) or nonperiodic actions (e.g., bend), and either
stationary (e.g., wave1 and wave2) or nonstationary motions
along both horizontal (e.g., skip), and vertical directions (e.g.,
jack). Please refer to http://www.wisdom.weizmann.ac.il/~vi-
sion/SpaceTimeActions.html.

Sample images of each action video are shown in Fig. 3, from
which we can see that some actions are somewhat similar in the
sense that the limbs have similar motion paths and forms; and
this high degree of similarity makes discrimination more chal-
lenging. In addition, people have different physical characteris-
tics and perform activities differently both in motion styles and
speeds. Different people are asked to perform the same actions
in this dataset, thus providing more realistic data for the test of
the method’s versatility.

B. Data Processing

We directly use the foreground masks from [27], though they
are not very perfect. These masks are obtained by background
subtraction in color-space. It should be noted that, whether the
actions in this dataset are in essence periodic or not, people are
asked to perform them multiple times in a repetitive manner
(except for bending). Each action video generally includes 2 4
complete action cycles. This property allows us to easily com-
pute each action’s duration in these videos by considering them
as semantically periodic motions (for bending, the real length of
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the video is simply selected as its duration). It needs to be em-
phasized that, for Similarity-I, we need to compute the action’s
duration for accurate matching; however, Similarity-II has no
such requirement (see Section V-D).

To estimate the action cycle of each silhouette video
[Fig. 4(a)], object s self-similarity is computed at times
and based on the similarity measure of the absolute correla-
tion [48]

(14)
where is the bounding box of the object , and a small
search radius is introduced to account for the segmentation
error. For periodic motions, will be also periodic [Fig. 4(b)],
where dark regions show more similarity. Periodic motions will
have dark lines parallel to the diagonal of . To determine if an
object exhibits periodicity, we can analyze the column vectors
of [i.e., a certain fixed and all , Fig. 4(c)]. We first linearly
detrended of this column vector to by subtracting its mean
value and then divided by its standard variance, then compute
its autocorrelation [Fig. 4(d)] by

(15)

Finally, we compute its first-order derivative to find peak posi-
tions by seeking the positive-to-negative zero-crossing points.
We estimate the real duration as the average distance between
each pair of consecutive peaks. A more accurate duration can be
estimated by averaging the results of multiple s. This process
has been demonstrated to be computationally feasible with re-
spect to current mask results.

We select two complete cycles from the middle part for each
original action video for the following experiments. Note that,
when selecting them, we do not, and need not, temporally as-
sign onset and ending for each class of action. The resulting
dataset includes in total 171 sequences ,
i.e., each person has 1 sequence for bending and two sequences
for each of nine other actions, each of which includes an action
with a complete duration (cycle). We center and normalize all
silhouette images in these sequences into the same dimension
(i.e., 64 48 pixels), and convert them into 3072-dimensional
input representations in a manner described in Section III. A
considerable portion of such visual inputs is used to learn the
action subspace. Fig. 5 shows two examples of action distribu-
tion where only 3-D space is used for visualization, in which the
points with same color are from the same action. From Fig. 5,
we can see that, the same actions have satisfactory clustering,
and different actions are also distinguishable. Note that jump,
run and skip are relatively closer in the embedding space due to
their high similarities.

C. Results and Analysis

1) Identification Mode: In identification mode, the classi-
fier determines which class a given measurement belongs to
in the nearest-neighbor framework. For a small number of ex-
amples, we compute an overall unbiased estimate of the true
recognition accuracy using the leaving-one-out cross-validation

Fig. 4. Periodicity analysis. (a) Input sequence, (b) self-similarity S, (c) a
column vector zzz of S, and (d) its autocorrelation.

method. Each time, we first leave one sequence out. Consid-
ering that repeated performances of the same action performed
by the same human vary quite slightly, the same action sequence
taken from the same original video is also removed, following
[27], while other actions of the same subject remain. Then, we
train on all the remaining sequences, and classify the omitted el-
ement according to its similarity differences with respect to the
rest of the examples. Thus, if this left-out sequence is classified
correctly, it must exhibit high similarity to a sequence from a
different person performing the same action. Fig. 6 shows cor-
rect classification rates (CCR) of action recognition.

From Fig. 6, the following basic conclusions can be drawn.
1) Dynamic shape manifolds are indeed informative (enough
to correctly classify human actions performed by people with
different body build and different motion styles). 2) Generally,
the supervised LPP obtains better results than unsupervised
LPP (naturally because it integrates class label information in
the training process, thus increasing the discrimination ability).
3) Overall, DT-III performs best among all input representa-
tions, but it only slightly outperforms DT-I. This may be due
to the fact it imposes more smoothness of the distance values
reflecting shape changes within or outside of the silhouette
shape. 4) DT-II performs worst, yet it has about 95% correct
classification rates for both similarity measures. 5) The selec-
tion of within 5 20 does not make big difference on the
results, which means that it is very easy to select to achieve
stable classification rates. 6) Similarity-II performs somewhat
better than Similarity-I. On the one hand, the median Hausdorff
distance is more robust than the frame-to-frame correlation;
however, data interpolation in Similarity-I may bring a negative
effect on the results.

2) Verification Mode: For completeness, we also estimate
the FAR (false acceptance rate) and FRR (false reject rate) via
the leave-one-out rule in verification mode. For the verification
mode, the pattern classifier is asked to verify whether a new
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Fig. 5. Visualizations of action manifolds: (left) each of ten actions from nine subjects and (right) ten actions from each of nine different subjects.

Fig. 6. Action classification results: (left) similarity-I and (right) similarity-II.

Fig. 7. ROC curves: unsupervised situation with (left)K = 20 and (right) supervised situation.

measurement really belongs to certain claimed class. Note that,
each time there is only one genuine attempt and nine imposters
since the left-out sequence is known to belong to one of the ten
action classes. Fig. 7 shows the ROC (receiver operating charac-
teristics) curves using both raw and DT-III representations, from
which some similar conclusions (to the identification mode) can

be drawn, e.g., the supervised LPP performs better than the un-
supervised one, i.e., S-LPP has much lower EERs (equal error
rate).

3) Reduced Dimension: Another important aspect is to ex-
amine the relationship between the reduced dimensions and the
recognition rates. Fig. 8 shows the classification performance
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Fig. 8. Recognition rate versus the reduced dimension l: (left) Similarity-I and (right) Similarity-II.

Fig. 9. Confusion matrixes of action classification: (top) Similarity-I and (bottom) Similarity-II.

vs. the reduced dimensions up to 20, from which we can see
that: 1) the recognition rate increases rapidly during the first few
values of . As the dimension increases, the recognition rate is
usually improved as expected and finally approaches a basically
stable level; 2) the S-LPP generally needs a lower dimension
than the unsupervised one to obtain good results; and 3) using a
smaller dimension is computationally more efficient but may
result in a lower recognition rate. Fortunately, our results have
shown that LPP has remarkably reduced the dimensionality, and
the proposed method generally does not need a high dimension
(e.g., about 8) to obtain very satisfactory results.

4) Confusion Matrix: For the unsupervised LPP, there exist
a few false classifications. To analyze which action sequences
(and why) are incorrectly classified, we show confusion ma-
trixes with respect to different similarity measures and visual
inputs in Fig. 9. The elements of each row in the confusion ma-
trix represent the probability that certain kind of action is clas-
sified as other kinds of actions.

From Fig. 9, it can be seen that most actions have perfect clas-
sification, and only quite a small number of actions, especially

skip and jump, wave and pjump, are easily confused. In addition
to high similarities among most silhouette shapes in these ac-
tions (with local similar moving patterns), poor foreground seg-
mentation may contribute to these confusions. From the experi-
ments, we also observe that the correct classification of all these
confused actions is generally within the first five best choices.

D. Robustness Test

To further evaluate performance of the proposed method, we
construct several experiments for testing robustness with respect
to periodicity, silhouette quality, and other challenging factors.

1) Length of Test Sequences: To examine the influence of
the test sequence length on the recognition results, we assess 90
original videos by applying the classifier with Similarity-II on
randomly selected subsequences of each action, each of which
includes varying portions of cycles. Note that all reference ac-
tion patterns include one cycle (i.e., a complete action). The
classification results are shown in Fig. 10 (left), from which we
can see that 1) the recognition accuracy is satisfactory, even for
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Fig. 10. Performance evaluation: (left) CCRs versus the length of test sequences and (right) CCRs versus synthetic noise.

Fig. 11. Example images and the associated corrupted silhouettes due to occlusions.

partial matching with less than one cycle, 2) S-LPP is less sub-
ject to the test sequence length than LPP, and 3) one cycle is
enough to provide the steady results in all cases.

2) Corrupted Silhouettes by Synthetic Noise: The silhouette
masks used for the above experiments are relatively noise-free.

A simple method to check sensitivity to noise is to add various
amounts of synthetic noise to all the silhouette images to simu-
late corrupted silhouettes. Since the silhouette image is binary,
we use “salt & pepper” noise for this experiment. A parameter,
the noise density, is used to represent the percentage of the af-
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TABLE I
PERFORMANCE EVALUATION ON REAL CORUPTED SILHOUETTE SEQUENCES

fected pixels in the whole image. The classification results are
shown in Fig. 10 (right), from which we can see that 1) raw
silhouette representation can tolerate a considerable amount of
noise (e.g., 5%), and 2) all distance transformed representa-
tions are very sensitive to such kind of isolated noise. This is
mainly because, unlike raw silhouette representation, such form
of noise greatly affects much more pixels in the whole image
when computing the distance values of each pixel (i.e., the noise
influence is significantly enlarged).

3) Corrupted Silhouettes by Real Occlusions: The syn-
thetic “salt & pepper” noise cannot necessarily reflect actual
low-quality silhouettes in real world. Current motion detection
methods often perform postprocessing on the background-sub-
tracted images based on morphological operators and connected
component analysis to remove isolated noise and small-area
cluttered motions. To further evaluate the performance of the
method on the actually corrupted silhouettes, we specially
collect some sequences in which human silhouettes are cor-
rupted to different extents, by different forms and degrees of
occlusions, as well as unconstrained environments.

Since the walking action is one of the most common mo-
tions in real life, and reliable analysis of it is very important
for other related research such as gait recognition, we captured
17 walking sequences for this experiment. Some example im-
ages and the associated silhouettes are shown in Fig. 11, and the
recognition results are summarized in Table I. Note that here we
just use a simple Gaussian-based background model in the RGB
color space for silhouette extraction (shadows around feet, and
low-contrast between background and foreground, influence the
silhouette quality). We only select from the video a subsequence
where the occlusion occurs from video for the test. From Table I,
it can be seen that our method can considerably tolerate low-de-
gree or high-degree but momentary occlusions, especially for
raw silhouette representation (all DTs are still sensitive com-
pared with raw silhouette representations). For significantly cor-
rupted silhouettes due to long and severe occlusions, our method
mostly fails.

4) Other Challenging Factors: We also address the perfor-
mance of our method with respect to other challenging factors
such as viewpoints, different clothes and motion styles, etc. Here
we use 10 walking sequences captured in various different sce-
narios in front of nonuniform background [27] for this experi-
ment. Some example images and the associated silhouette seg-
mentation results are shown in Fig. 12. In contrast to corrupted
silhouettes in Fig. 11, the silhouettes here embody deformations
of human shapes, compared with normal walking pattern.

We report the test results using the raw and DT-III represen-
tations together with Similarity-II. The above experiments have

Fig. 12. Test walking sequences. From left to right and from top to bottom:
diagonal walk, walk with a dog, walk and swinging a bag, walk in a skirt, walk
with the legs occluded partially, sleepwalking, limping, walk with knees up, and
walk when carrying a briefcase, respectively.

already shown that the matching using the sequence with mul-
tiple repeated action cycles; and the matching using the cycle-
segmented sequences, have similar correct classification rates
when using Similarity-II (i.e., the point-set matching properties
of the Hausdorff distance makes it able to handle different time
durations and shifting). We directly use these whole walking se-
quences without segmenting into different cycles in this exper-
iment. Each reference action type is matched in these walking
sequences to find the best matched action type. Table II summa-
rizes the results, from which it can be seen that, except for three
(for raw representation) or two (for DT-III) sequences, all other
test sequences are correctly classified as the “walk” action. This
shows that the proposed method has relatively low sensitivity to
considerable changes in scale, viewpoint (30 40 degrees) and
clothes, high irregularity in walking forms, etc.

E. Comparisons

1) Comparison I—Different Dimension Reduction Methods:
The purpose of this comparison is to find which method is more
effective for subspace learning of dynamic shapes of human ac-
tions. Here we select two linear methods (i.e., PCA and LDA),
two nonlinear ones (i.e., LLE and LE), and 171 sequences in
Section V-B for this experiment. PCA [34] is an eigenvector
method designed to model linear variation in high-dimensional
data. LDA [35] searches for the projection axes on which the
data points of different classes are far from each other while
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TABLE II
RESULTS OF ROBUSTNESS TEST EXPERIMENTS

TABLE III
COMPARISON OF CCRS USING DIFFERENT DIMENSION REDUCTION METHODS PLUS SIMILARITY-II

requiring data points of the same class to be close to each
other. For LLE [36], assuming that each data point and its
neighbors lie on a locally linear patch of the manifold, each
point can be reconstructed as linear combinations of its local
neighbors. The objective is to find the construction weights that
minimize the global reconstruction errors. In LE [38], the em-
bedding maps for the data come from the approximation to the
Laplace–Betrami operator defined on the entire manifold. For
each method, we carefully determine the optimal parameters
by experiments, in order to provide fair comparison. We report
the best results using all 171 sequences (with Similarity-II
and the leave-one-out rule) in Table III; and visualizations
using the raw representation are shown in Fig. 13. In order to
observe the statistical significance of the results among various
algorithms, we also establish confidence intervals with respect
to CCRs. Each time, we randomly sample 100 sequences from
the whole dataset without replacement as a subset for testing,
and the remaining 71 sequences (including all ten classes) for
training. Such testing procedure is repeated 1000 times. The
associated results with 95% confidence intervals using both
raw and DT-III inputs are also listed in Table III.

From Fig. 13 and Table III, some conclusions can be drawn
with respect to the reduced dimensions, CCRs, statistical sig-
nificance, and the clustering abilities in the embedding space:
1) LPP and S-LPP generally perform better, and DT-III repre-
sentation is superior to raw representation. 2) Amongst the two
kinds of supervised methods, S-LPP outperforms LDA. This is
probably because LPP can discover the nonlinear structure of
activity manifolds more effectively. 3) As a supervised method,

LDA performs a little better than PCA and the unsupervised
LLE, but similar to the unsupervised LPP and LE. 4) Inter-
estingly, nonlinear LE and LLE performs not as well as those
linear methods. Possible explanations are that the practical data
have high curvature both in the observation space and in the
embedded space, and that parameter adjustment in LE or LLE-
based manifold learning and extrapolation (which is relatively
hard to do well) probably brings considerable influences on the
results. 5) For any one representation, PCA, LE and LLE usually
need a larger dimension (compared with supervised LDA and
S-LPP), which naturally increases the computation complexity.
6) Unlike the experiments using the leave-one-out cross-vali-
dation rule (in which each test action has multiple reference
templates with the same action class for matching, i.e., eight
templates for bending and 16 templates for other nine actions),
there are relatively less templates for each action to be tested in
the estimation of statistical significance, thus leading to a little
lower average CCRs for each dimension reduction method. 7)
Although action measurements are inherently nonlinear across
the whole action, linear PCA and LDA provide good discrimina-
tion rates, just somewhat lower than LPP overall (though LPP
has been demonstrated to be far superior to PCA and LDA in
static face recognition [43]). This is probably because that the
action is not considered as one entity but a sequence of enti-
ties, thus the introduction of temporal relation to some extent
increases their discriminating powers. However, compared with
S-LPP, PCA and LDA need an overall higher dimensionality to
obtain good results, thus leading to higher computational cost.
8) In particular, LPP and S-LPP have relatively better visual
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Fig. 13. Three-dimensional visualization of projections of all action sequences using different dimension reduction methods with the raw input. (a) S-LPP; (b)
LPP; (c) PCA; (d) LDA; (e) LE; (f) LLE.

TABLE IV
COMPARISION OF OUR METHOD WITH [27] AND [32]

clustering effect. This is because, by trying to preserve neigh-
borhood structure in the embedding, LPP implicitly emphasizes
the natural clusters in the data. This is a key ideal property for
classification tasks. Although other methods may obtain similar
results, their clustering effects are very poor, which naturally
decreases the performance as the number of actions increases.
Analysis of statistical significance also demonstrates the advan-
tages of LPP and SLPP over other methods.

2) Comparison II—Comparison With Methods of Masoud
and Papanikolopoulos and of Blank et al.: It is more mean-
ingful and fair to make comparison of different algorithms on the
same dataset. Here, we compared a related method described in
[32], which uses linear PCA on the filtered images for obtaining
low-dimensional activity description. The evaluation of [32] was
carried out on a test dataset of eight actions and 168 sequences,
and achieved a best recognition rate of 92.8% using the nearest
centroid manifold distance, with the reduced dimension of 50; or

82% using the nearest manifold distance (as we use in this paper).
Due to the unavailability of their databaseweare unable to test the
proposed algorithm on their dataset. Therefore, we re-implement
their method on the datasets [27] we used for both classification
and the robustness test. The best recognition rate is 88.9% (see
Table IV), which is far lower than our method’s. In particular,
with respect to robustness test, their method can only classify
normal walking. This further demonstrates that PCA is sensitive
to outliers and noise, and unsuitable to learn nonlinear activity
manifolds. In Table IV, we also directly cite the best results re-
ported in [27] using the same dataset (without the skipping action
there, however, it has been found in our experiments that “skip”
is easily confused for classification). Our results are comparable
to those of Blank et al., but our feature selection and extraction
are apparently simpler than theirs.

3) Comparison III—Compendium of Results Reported: The
lack of a common database (in face recognition, the FERET
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TABLE V
SUMMARY OF SOME REPRESENTATIVE METHODS OF HUMAN MOTION RECOGNITION

database is an example serving that comment well) and stan-
dardized evaluation methodology has been an apparent limita-
tion in the development of action recognition algorithms. Al-
though a large number of papers reported good recognition re-
sults on individual databases with different numbers and var-
ious categories of actions, they seldom made informed compar-
ison among various different methods due to the real difficulties
of making such quantitative comparison. Here, we simply list
some representative studies in terms of their test datasets, ap-
proximate accuracies, and basic principles in Table V. To some
extent, these methods reflect the latest and best work in human
motion or action recognition.

From Table V, we can see that our method and its perfor-
mance demonstrated here are comparable to others with respect
to recognition rates with robustness. Moreover, we have demon-
strated these qualities on a comparable dataset in terms of size
and complexities. The simplicity and reliability of the extracted
features, upon which our method is constructed, is also very
competitive (that is, we do not use extraordinarily complex or
high quality feature extraction). Yet our method has several ad-
vantages: 1) our method is very easy to understand and imple-
ment. It only analyzes binary shapes, without the requirement of
video alignment and explicit 2-D or 3-D tracking; 2) our method
avoids feature tracking, the computation of optical flow, and the
extraction of gradient or intensity based features (and, hence,

their complexities and brittleness); 3) our method avoids the
problems of the computation complexity, and the difficulty of
parameter selection, introduced in some approaches based on
motion modeling using dynamic probabilistic networks such as
HMMs, CRF and so on; and 4) our method has also the poten-
tial to cope with low quality video data, where other methods,
especially those based on intensity features only, will fail.

VI. SUMMARY AND FUTURE WORK

Human action recognition has gained increasing interest
in the computer vision community. Compared with other
extensively studied topics such as human detection, tracking
and recognition, human activity understanding is in its infancy
due to the complexity and variety of actions. This paper has
proposed a simple but effective method for human action
recognition. The major core is based on low-dimensional em-
bedding representations of dynamic silhouettes obtained from
the action videos. Extensive experimental results have validated
the powerful abilities of the proposed method.

Although the experiments have demonstrated that our
methodology works effectively, further evaluation on a larger
database, with multivaried actions, subjects and scenarios,
needs to be carried out. Both shape and kinematics information
derived from actions play important roles in human motion
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analysis [26]. Fusion of two cues is, thus, preferable for im-
proving the accuracy and reliability. Most current work on
action and motion interpretation remains rooted in view-depen-
dent representations. Although there have been some attempts
for this problem [14], [16], [29], they usually use the epipolar
geometry between the views of two or more cameras to perform
view invariant recognition. How to extract view-invariant mo-
tion features still remains challenging. We also plan to test our
algorithm with a spatiotemporal extension to Isomap [46], or
to augment other dimension reduction methods with temporal
relation for dealing with the problem of manifold learning of
dynamic data.
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